APPLY FOR INFORMATIOIN

 
DIVULGATION ARTICLES

Our Scientific publications, thesis, methods for innovation and divulgation articles.

Stability study of the milling process using an exponential force model in frequency domain

Stability study of the milling process using an exponential force model in frequency domain

"In the last decade the prediction of the stability of different milling processes has experimented a great advance. Part of these advances are related to the successful application of frequency models that provide sufficiently precise analytic solutions for the industrial environment. Most of these models of regenerative chatter are based on lineal models of cutting force. Following these models, the cutting forces vary linearly with the chip thickness; therefore it is supposed that the stability of the process does not depend on the ..."

March 2006

CONTACT WITH US FOR MORE INFORMATION

(34)943 748 000

RELATED ARTICLES

Comparative analysis of spindle speed variation techniques in milling
MAY OF 2004

Optimization of hard material roughing by jeans of a stability model
APRIL OF 2005

Time and frequency domain models for chatter prediction in milling
NOVEMBER OF 2005

Evaluation Study on Detection Techniques for Bearing Incipient Faults
JANUARY OF 2005

Feasibility study on diagnostic methods for detection of bearing faults at an early stage
JULY OF 2005

Chatter avoidance method for milling process based on sinusoidal spindle speed variation method: simulation and experimental results
SEPTEMBER OF 2007

Analysis of Stability of Structural Modes in Milling Processes
APRIL OF 2010

Stability of serrated milling cutters
JUNE OF 2010

Effect of mode interaction on stability of milling processes
MAY OF 2010

Machine availability increase
JANUARY OF 2010

Fixed Boundaries Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction.
OCTOBER OF 2011

General Milling Stability Model for Cylindrical Tools
JULY OF 2012

Self-tuning semi-active tuned-mass damper for machine tool chatter suppression
MARCH OF 2012

Ball bearing damage detection using traditional signal processing algorithms
APRIL OF 2013

Design of a bench hardware-in-the-loop system for the study of chatter in turning.
MAY OF 2013

Design of an active damper for the elimination of chatter in machine tools
NOVEMBER OF 2013

Cylindrical milling tools: Comparative real case study for process stability
JANUARY OF 2014

Mechatronic Spindle Head for Chatter Suppression in Heavy Duty Operations
JULY OF 2014

Chatter suppression in a high speed magnetic spindle by adding damping
FEBRUARY OF 2014

Optimal control laws for chatter suppression using inertial actuator in milling processes
NOVEMBER OF 2014

Real milling force based dynamic parameter extraction method
DECEMBER OF 2014

Limiting factors for the active suppression of structural chatter vibrations using machine’s drives
JULY OF 2015